Super Differential Forms on Super Riemann Surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Line Bundles on Super Riemann Surfaces

We give the elements of a theory of line bundles, their classification, and their connec-tions on super Riemann surfaces. There are several salient departures from the classicalcase. For example, the dimension of the Picard group is not constant, and there is nonatural hermitian form on Pic. Furthermore, the bundles with vanishing Chern numberaren’t necessarily flat, nor can every such bundle b...

متن کامل

New Fields on Super Riemann Surfaces

A new (1, 1)-dimensional super vector bundle which exists on any super Riemann surface is described. Cross-sections of this bundle provide a new class of fields on a super Riemann surface which closely resemble holomorphic functions on a super Riemann surface, but which (in contrast to the case with holomorphic functions) form spaces which have a well defined dimension which does not change as ...

متن کامل

Super-liouville Equations on Closed Riemann Surfaces

Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic aspects of the resulting Euler-Lagrange equations, culminating in a blow up analysis.

متن کامل

Super Riemann Surfaces: Uniformization and Teichmiiller Theory

Teichmiiller theory for super Riemann surfaces is rigorously developed using the supermanifold theory" of Rogers. In the case of trivial topology in the soul directions, relevant for superstring applications, the following results are proven. The super Teichmiiller space is a complex super-orbifold whose body is the ordinary Teichmiiller space of the associated Riemann surfaces with spin struct...

متن کامل

Torsion constraints and super Riemann surfaces.

Super Riemann surfaces are important in superstring theories as the generalization of the bosonic world sheet. In one approach to their study, one introduces two-dimensional supergravity, subject to certain conditions on the field strengths. Another approach builds super Riemann surfaces from superconformal patching data with no mention of the constraints. We show the equivalence of these two a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 1994

ISSN: 0033-068X,1347-4081

DOI: 10.1143/ptp/92.4.889